

V2.4

MEMS DIGITAL ACCELEROMETER **AKF392**

Technical Manual

- ★ HIGH PRECISION
- ★ HIGH STABILITY
- ★ HIGH FREQUENCY RESPONSE

▶ PRODUCT INTRODUCE

The AKF392B three axis accelerometer is produced using Swiss patented technology.

This acceleration series can be applied to various fields such as vibration testing and impact testing. The product adopts digital interface output, RS232/485/TTL optional, different address codes can be set, and multiple sensors can be used in series for long distances, which is convenient for multi-point measurement and data analysis. The AKF392B is a monocrystal line silicon capacitive sensor, consisting of a micromachined silicon chip、a low-power ASIC for signal conditioning、a microprocessor for storing compensation values and a temperature sensor. This product has low power consumption, Complete calibration system, solid structure and stable output. The new electronic configuration provides solid-state power for reset, and providing full protection for over-current. In the full range, Typical values for long-term stability and bias of the scale factor are less than 0.1%. This series of products has the characteristics of strong structure, low power consumption and excellent deviation stability, which guarantees outstanding output reliability.

► FEATURE

★ Three-axis (X、Y、Z)

★ power voltage: 9~36V

★ Storage temp: -40°C to +85°C

★ output: RS232/RS485/TTL

★ work temp: -40°C to +85°C

★ Excellent deviation stability

★ Excellent performance (impact, vibration and temperature)

► APPLICATION

★ crash record, fatigue monitoring and prediction

★ Low frequency vibration and automatic monitoring

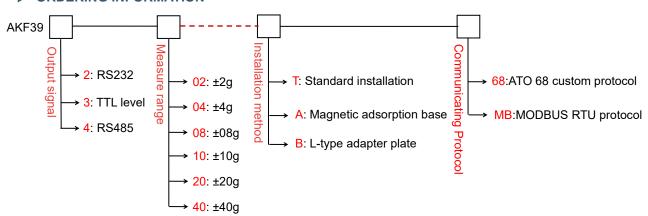
★ Large machinery, engine

★ bridge

- ★ wind power generation
- \star automobile

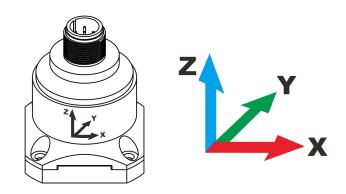
★ armamentarium

★ road roller



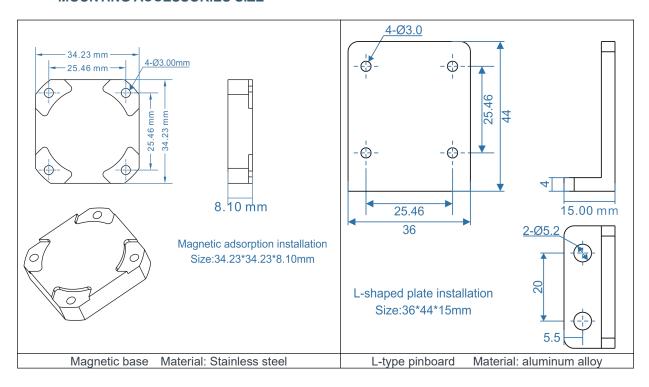
▶ SPECIFICATIONS

AKF392T	PARAMETER UNIT						
Range	±2	±4	±8	±10	±20	±40	g
Deviation Calibration	<1	<1	<1	<1	<1	<1	mg
Measuring Axial	X,Y,Z	X,Y,Z	X,Y,Z	X,Y,Z	X,Y,Z	X,Y,Z	Axial
Up/Off Power Repeatability	<2	<2	<2	<2	<2	<2	mg(max)
Deviation Temp. Coefficient	0.01	0.01	0.01	0.01	0.01	0.01	%/℃(Typical value)
Resolution/Threshold (@ 1Hz)	< 1	< 1	< 1	< 1	< 1	< 1	mg(max)
Nonlinearity	<0.5	<0.8	<1	<1	<1	<1	% FS(max)
Bandwidth (3Db)	500	500	500	500	500	500	Hz
Cross-axis sensitivity	1	1	1	2	2	2	%
Lateral vibration sensitivity ratio	1	1	2	5	5	5	%
Noise density	21	21	21	86.6	86.6	86.6	μg/√Hz
Resonance frequency	2.4	2.4	2.4	5.5	5.5	5.5	kHz
68 protocol automatic output rate		5Hz、10H	z、25Hz、	50Hz、10	0Hz、200H	Hz、500Hz	z、1000Hz
MODBUS automatic output rate				10Hz、25	Hz、50Hz		
Output Interface				RS232/R	S485/TTL		
Protocol		ATO) Standard	Protocol A	And Modbu	s Rtu Prot	ocol
Input(Vdd_Vss)	9~36 VDC						
Current Consumption	<60mA @ 12 VDC						
Connector	Industry standard M12 connector						
Weight	Prod	uct net wei	ght: 82g, n	nagnetic ba	ase: 48g, L	-shaped a	dapter plate 20g
Size			gnetic adso	rption bas	.3*34.3*38 e size: 34.2 ate size: 36	23*34.23*6	

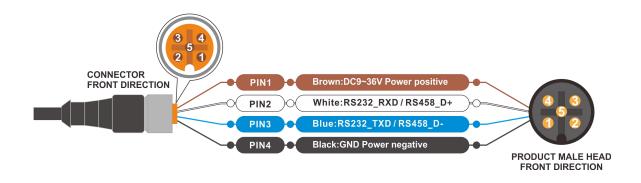

▶ ORDERING INFORMATION

E.g AKF392-02-T-68: RS232 signal output / ±2g range / standard installation / ATO 68 custom protocol.

▶ PRODUCT MEASUREMENT DIRECTION

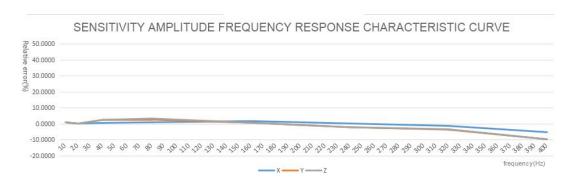


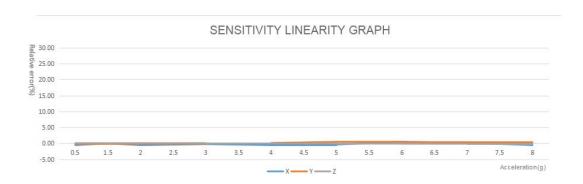
► SIZE



▶ MOUNTING ACCESSORIES SIZE

▶ ELECTRICAL CONNECTION


_	BROWN	WHITE	BLUE	BLACK
FUNC:	PIN1	PIN2	PIN3	PIN4
COI	DC9~36V	RS232(RXD)	RS232(TXD)	GND
ON LOR	Power supply	Or RS485(D+)	Or RS485(D-)	Power supply
لا	positive	OI N3463(D+)	OI 13465(D-)	Negative


► SENSITIVITY AMPLITUDE-FREQUENCY RESPONSE CHARACTERISTIC CURVE

(reference condition: f=20.000Hz, a=2.000G)

Reference diagram of measuring range ±8G

► SENSITIVITY LINEARITY GRAPH

► COMMUNICATING PROTOCOL

1. DATA FRAME FORMAT: (8 bits date, 1 bit stop, No check, Default baud rate 9600)

Identifier (1byte)	Date Length (1byte)	Address code (1byte)	Command word (1byte)	Date domain	Check sum (1byte)
68					

data format : Hex Identifier: Fixed 68H

Data length: From data length to check sum (including check sum) length

Address code: Accumulating module address, Default:00

Date domain will be changed according to the content and length of command word Check sum: Data length, Address code, Command word and data domain sum, No carry.

2. Command word analysis

Desc.	Meaning/Example	Description		
0704	Read the acceleration simultaneously	Data domain(0byte)		
0X04	E.g: 68 04 00 04 08	No Data domain command		
	Sensor answer reply	Data domain (9byte)		
	E.g: 68 0D 00 84 00 20 10 10 40 00 05 05	AA AB BB CC CD DD EE EF FF		
	00 1B	AA AB BB:three character means X axis;		
		CC CD DD:three character means Y axis;		
		EE EF FF:3 characters means Z axis;		
		The angle format is the same as the X axis		
		or Y axis analysis method.		
		The angle in the left example:		
		X axis 02.010g,		
		Y axis -04.000g,		
		Z axis: +50.500g.		
		00 20 10 red three bytes return the angle		
		value for the X-axis, For compressed BCD		
0X84		codes, The upper ${\color{red}0}$ of the first byte is the		
07.04		sign bit (0 positive, 1 negative)		
		02 is a two-digit integer value,		
		010 is a three-digit decimal value. The other		
		axis data parsing methods are the same,		
		This angle is resolved to +02.010g.		
		10 40 00 Blue three bytes return the angle		
		value for the Y axis, the analytical method is		
		the same as the X axis.		
		05 05 00 Green three bytes are the internal		
		temperature value of the product, and the		
		analytical method is the same as the X-axis		
		angle.		
		1B : checksum, all data hexadecimal sum,		
		no prefix 68.		
0)(0.7	Setting communication rate	Data domain(1byte)Baud rate: default :9600		
0X0B	E.g: 68 05 00 0B 03 13	00 means 2400		
	The command setting is effective	02 means 9600 03 means 19200		

	after power off then restart	04 means 38400
	(power off with save function)	06 means 230400
0X8B	Sensor answer reply command E.g: 68 05 00 8B 00 90	Data domain (1byte) Data domain in the number means the sensor response results 00 Success FF Failure
охос	Setting sensor output mode Response rule; Need upper computer send reading angle command, the sensor answer the corresponding angle Automatic output rule: The sensor with power on can Automatically output X,Y angle, The output frequency base on what be setted, if you need output High frequency, please set baud rate as 115200 (Power off with save function) E.g: 68 05 00 0C 00 11	Data domain (1byte)Factory default: 00 00 Response system 01 5Hz Auto output mode 02 10Hz Auto output mode 03 25Hz Auto output mode 04 50Hz Auto output mode 05 100Hz Auto output mode 06 200Hz Auto output mode 07 500Hz Auto output mode (Baud rate adopt 115200、230400) 08 1000Hz Auto output mode (Baud rate adopt 230400) 09 300Hz Auto output mode (Baud rate adopt 115200、23040) 10 400Hz Auto output mode (Baud rate adopt 115200、23040)
0X8C	Sensor answer reply command E.g: 68 05 00 8C 00 91	Data domain (1byte) Data domain in the number means the sensor response results 00 Success FF Failure
0X0F	Setting module address command The sensor default address is 00, 1, such as a plurality of sensor to be connected with a bus cable, e.g RS485.requires each sensor is set to a different address, in order to achieve control and response angle. 2, If successfully changed the new address, follow all of the commands and responding Packet address code has to switch to the new address code which already changed then to be effective, otherwise the sensor will not respond to commands.(power off with save function) E.g: 68 05 00 0F 01 15 Setting the address to 01 68 05 FF 0F 00 13 Use the common address to reset address	Data domain (1byte) XX Module address Address from 00 to EF range Note: All products have a common address:FF, If forget the address what has been set during operation, can use FF address to operate the product can still normally respond.

	to 00	
0X8F	The sensor answer reply command E.g: 68 05 00 8F 94	Data domain (1byte) , Data domain in the number means the sensor response results 00 Success FF Failure
0X53	Set save command 68 04 00 53 57	
0XD3	Set save command reply 68 05 00 D3 00 D8	Data domain (0BYTE) Data domain in the number means the sensor response results 00 Success FF Failure
0XFF	Read version software number instruction 68 04 00 FF 03	
	Read software version reply AKF392,SW V1.1	Data domain (BYTE) Data domain in the number means the sensor response results Return is in ASCII code format, model (AKF392), Software version number 1.1

3. Setting instructions and processes

3.1.Set related parameters (Baud rate, address code, automatic output frequency.)Only valid settings are set at this time, but not saved to FLASH,. Power down is not saved.

A Set address code

B Set baud rate

C Set the calibration parameters

D Automatic or inquiry mode

Notice: Take effect immediately after setting the address code and baud rate (but not saved to FLASH). The subsequent operation instructions need to change the corresponding address code and baud rate to be set successfully.

3.2. Save parameters, write all parameters to FLASH

▶ MODBUS RTU PROTOCOL

1. Data frames format:

RTU Mode

Communication Parameter: Baud rate 9600 bps

Data frames: 1 Start bit, 8 datas, even parity check, 1 stop bit

Please read the following items carefully before use:

1) Because of the MODBUS protocol stipulates between the two data frames should be at least more than 3.5 bytes of time (such as the baud rate of 9600, the time is 3.5 X (1/9600) X 11=0.004s). However, in order to leave enough margin, the sensor will be increased this time to 10ms, so please leave at least of the time interval between each data frame.

The master computer sends commands --10ms idle -- slave computer reply command -- 10ms idel - The master computer sends commands......

- 2) MODBUS protocol stipulates the broadcast address ----0 relevant content, the sensor can also accept the broadcast address content, but will not reply. Therefore, the broadcast address 0 can be used for the following purposes, for reference only.
- ①All the sensors mounted on BUS are all set to an address.
- ②All the sensors mounted on BUS are all set to relative / absolute zero.
- ③ Test all sensors mounted on BUS, that is, the master computer send 0 address to BUS for query angle command, communication lights can flicker that means the communication is normal.
- 3) In order to improve the reliability of the system, set the address command and set the absolute / relative command, set the baud rate, these three commands must be sent for two consecutive times will be valid. "Two consecutive send" refers to two times sent successfully (the slave machine reply every time) ,must be consecutive in two times, that's means the master computer can not insert other frames in the midele of two replies , otherwise, the command will be locked until the power off , setting process refer to below:

Send set address command -- waiting for the slave computer to send command of successful commands - (no other commands) to send the set address command again - waiting for the successful settings from the slave computer to send the command - modify the success

- 4) After power up, the above two sets of commands can be set only once, if necessary, again need to re power.
- 5) When the normal communication accumulated to a certain number of times, the communication indicator will flash once.

2. Read the holding register to fetch acceleration data

Modbus FUNC 03H

Master Computer Inquiry Command:		Slave Computer Response:			
Sensor Address	01H	Sensor Address		01H	
FUNC	03H	FUNC		03H	
Visit Register first	00H	Data Length 9 bytes	ytes 09H		
Address	02H	Data word 1 upper 8 bits	50H		
Data Langth 4 hytan	00H	Data word 1 lower 8 bits	46H	X Axis Data	
Data Length 4 bytes	04H	Data word 2 upper 8 bits	00H		
CRC	E5C9H	Data word 2 lower 8 bits	23H	Y Axis Data	

						Data	word 3	upper 8	bits	20H		
						Data	word 3	lower 8	bits	00H		
						Data	word 4	upper 8	bits	00H		
						Data	word 4	lower 8	bits	00H	ZAx	is Data
						Data	word 5	upper 8	bits	00H		
			CR	C			B827H					
Read tl	Read the measured data command applicaton example 1:											
Master computer sending 01 H			03 H	00 H	02 H	00 H	04 H	E5H	C9H			
Slave computer response												
01H	03H	08H	50H	46H	00H	23H	20H	00	00H	00H	B8H	27H

Note: The data field of the slave reply frame is 50H, 46H, 00H, 00H, 23H, 20H, 00H, 00H, 00H

The X axis is the 1-3 bytes of the data field, the Y axis is the 4-6 bytes of the data field, and the Z axis is the 7-9 bytes of the data field, with the low byte first. The expression method of acceleration is the number of points, one point corresponds to 0.001°, 0.001×(number of points-bias) is the acceleration, and the bias is 90000.

Take the above data frame as an example: the conversion process of acceleration is as follows:

1) Get the current acceleration points. Note that the low byte is first, the X axis is 004650H, the Y axis is 002023H, and the Z axis is 0.

Converted to decimal, X axis: 4650H→18000, Y axis: 2023H→8227, Z axis: 0.

- 2) Subtract the bias of 90000 (note: this value is a fixed amount), X axis: 18000-90000=-72000, Y axis: 8227-90000=-891773, Z axis 0-90000=-90000.
- 3) Get the final accelerometer, X axis: -72000×0.001=-72.000G, Y axis: -81773×0.001=-81.773G, Z axis: -90000×0.001=-90G.

Read acceleration data of input register

Modbus function code 04H, this is format two outputs. Users can adjust the register address and length to access different axis data according to their needs. The register table is as follows:

Register address	Data content	Data type	Unit	Remark
30003	X acceleration	UINT32 (R)	g	data analysis as follow
30005	Y acceleration	UINT32 (R)	g	data analysis as follow
30007	Z acceleration	UINT32 (R)	g	data analysis as follow

Application example of reading measurement data command 1:

Host query command:		Slave response:			
Sensor address	01H	Sensor address	01H		
Function code	04H	Function code	04	1H	
Access register	00H	Data length12 bytes	0CH		
First address	02H		94H		
Data length 6 bytes	00H		5FH	X axis	
CRC	06H	Data domain	01H	value	
CRC	D1 C8 H		00H		
			65H		
			63H	Y axis value	
			01H	value	

	00H	
	47H	
	60H	Z axis
	01H	value
	00H	
CRC	1BI	E4H

In the above table, the X axis is the data field 1-4 bytes, the Y axis is the data data field 5-8 bytes, and the Z axis is the data data field 9-12 bytes. Low byte first. The representation method of acceleration is the number of points, one point corresponds to 0.001° , $0.001 \times (\text{number of points-bias})$ is the acceleration, and the bias is 90000.

Take the above table data as an example: the conversion process of acceleration is as follows:

1) Get the current acceleration points. Note that the low byte is first, the X axis is 00015F94H, the Y axis is 00016365H, and the Z axis is 00016047H.

Converted to decimal, X axis: $00015F94H \rightarrow 90004$, Y axis: $00016365H \rightarrow 90981$, Z axis: 00016047H->90183.

- 2) Subtract the bias of 90000 (note: this value is a fixed amount), X axis: 90004-90000=4, Y axis: 90981-90000=981, Z axis 90183-90000=183.
- 3) Get the final accelerometer, X axis: 4×0.001= 0.004G, Y axis: 981×0.001=0.981G, Z axis: 183×0.001=0.183G.

4. Set the sensor address:

Set sensor address code	command:	Slave response:		
Sensor address	01H	Sensor address	01H	
Function code	06H	Function code	06H	
	00H	Degister address	00H	
Address	11H	Register address	11H	
Canaannauvaddaaa	00H	Sensor new address	00H	
Sensor new address	04H	Sensor new address	04H	
CRC	D80C	CRC	D80C	

Commands must be sent two times to be valid

Set sensor address command example:										
Master computer sending 01H 06H 00H 11H 00H 04H D8H 0CH										
Slave computer response										
01H	06H	00H	111	1	00H	04	04H D8 H		0CH	

Note: 0011H is the register address, which controls the sensor address. In the example above, the address of the sensor is changed to 0004H, and the last two bytes are CRC checksum.

5 Set sensor Baud rate : (factory default 9600bps)

Set sensor Baud rate coo	le command:	Slave computer response:				
Sensor address 01H		Sensor Address	01H			
FUNC	06H	FUNC	06H			
De vieten e deluces	00H	Degister address	00H			
Register address	12H	Register address	12H			
Baud rate of the sensor	00H	Baud rate of the sensor	00H			

12

76H

XXXX CRC CRC LH CRC LH CRC XX: A0H:4800 A1H:9600 A2H:19200 A3H:38400 A4H:115200 Set sensor Baud rate command example: 01H 06H 00H 12H 00H A2H H8A 76H Master computer sending Slave computer response

Note: 0012H is the register address, which controls the baud rate of the sensor. In the above example, the baud rate of the sensor is set to 19200, and the last two bytes are CRC checksum.

00 H

A2H

H8A

6. Set the sensor communication character format: (Factory default is even parity)

12 H

01H

06H

00H

Set the sensor communication character		Slave response:					
format code command:							
Sensor Address	01H	Sensor Address	01H				
FUNC	06H	FUNC	06H				
address	00H	register	00H				
address	09H	address	09H				
Sensor changes	Sensor changes 00 H communication New		00H				
communication							
character format 01H			01H				
CRC	9808	CRC	9808				

Application example of Set the sensor communication character format command:										
Host send 01 H 06 H 00 H 09 H 00 H 01H 98H 08H							H80			
Slave reply										
01 H	06 H	00 H		09 H 00 H		Н	01H	98	Н	08H

The above example is to set the byte format to: one start bit + 8 data bits, no parity, + 1 stop bit It is effective after power-on again. The factory default is one start bit + 8 data bits, even parity check + 1 stop bit

Note: 0009 is the register address, which controls the character format of sensor communication.

0000H: One start bit + 8 data bits, even parity +1 stop bit

0001H: One start bit + 8 data bits No parity + 1 stop bit

7. Set sensor automatic output: (factory default 0HZ)

Set sensor automatic out	put code command:	Slave response:				
Sensor address	01H	Sensor address	01H			
Function code	06H	Function code	06H			
Address	00H	Pagistar address	00H			
	13H	Register address	13H			
Sensor output	Sensor output 00H		00H			
frequency	frequency XX		XX			
CRC	CRC LH	CRC	CRC LH			

The following table shows the valid values of the data field XX:

frequency	0HZ	10HZ	25HZ	50HZ
Format one output setting command	00H	01H	02H	03H

13

Format two output setting command 00H	A1H	A2H	A3H
---------------------------------------	-----	-----	-----

Set sensor automatic output command example:											
Host send 01H 06H 00H 13H 00H A2H A8H 76H											
Slave reply											
01H	06H	00H	13H		00 H	A2H		A2H A8H		76H	

Note: 0013H is the register address, which controls the output frequency of the sensor. In the above example, the sensor is set to output data at 25HZ according to format two, and the last two bytes are the CRC checksum.

Note: ATO custom protocol and MODBUS protocol switch methods to each other:

At power-on, the upper computer always sends 0xAA. When the accelerometer returns 0XAA, 0XAA, 0XBB, 0XBB, the change is successful.