

Chloride Sensor for Water Quality User Manual

catalogue

First, inform users
Two, product inspection
Three, product introduction
Iv. Technical parameters
Five, wiring instructions
Vi. Communication Agreement
1 Protocol description 4
2. Register General Description 5
3 Read the floating register data command format function code 03 or 04 6
4 Read the parameter register data instruction format function code 03
5 Read the information register data instruction format function code 03 11
6 Modify a single parameter or information register data instruction format function
code 06
7 Error instruction answer format 15
8 Floating register address (whole type) 16
9 Floating register address (floating point)
10 Parameter register address
11. Information register address
12 Ion standard liquid code and calibration situation
13 Unit control table
VII. Setting mode
Viii. Calibration mode
1 Calibration process
2 Calibration instructions
3 Calibration examples21
9. Commonly used instructions
1 Read the register
2. Modify the register
3 Restore factory
4 Electrode calibration
quality assurance

To inform the user

Thank you for supporting your company. Please read the instructions in detail to help you use our products correctly.

Two, product inspection

Carefully open the package, check whether the instrument is damaged, and whether the accessories are complete, please contact the dealer or our company immediately.

Under any circumstances, the instrument shall not be removed, if such behavior, the company is no longer responsible for the warranty.

Three, product introduction

The product is a digital sensor integrating the electronic circuit and the microprocessor into the interior of the digital sensor, hereinafter referred to as the digital electrode, which has the following characteristics

- 1. RS-485 transmission interface, MODBUS-RTU communication protocol, two-way communication.
- 2. Power supply and output isolation design to ensure electrical safety.
- 3. Built-built protection circuit, enhance the anti-interference ability, to adapt to the complex environment.
- 4. The communication protocol is easy to use, can output more electrode diagnostic information, more intelligent.
- 5. Low-power consumption is designed for more usage situations, and the internal memory saves the calibration and setting information in case of power failure.
- 6. PPS housing, strong corrosion resistance, 3 / 4 front and rear threads, easy installation.

Iv. Technical parameters

	measuring range	0-1000ppm	
	resolution ratio	0.001 p pm	
ionic concentration	certainty of measurement	±0.5%FS	
	measuring range	10.0-110.0℃	
	resolution ratio	0.1℃	
temperature	certainty of measurement	±0.5℃	
	Temperature type	Thermistor NTC 10K	
	temperature compensation	Automatic / manual	
data transmission	RS-485	MODBUS-RTU communication protocol	
	working power supply	9~27VDC	
Otherware	Isolation intensity	2500Vrms	
Other parameters	Product power	About 0.5W	
	Product material	PPS monoblock	
	way to install	3 / 4 in front and rear thread	

Five, wiring instructions

	pigment	function declaration
data transmission	Yellow line	RS-485 Communication T / R + (A)
uata transmission	White line	RS-485 Communication T / R- (B)
Dower sumply	Red line	DC power supply is positive
Power supply	Black line	DC power supply ground

The instrument adopts RS-485 Modbus communication protocol RTU mode, with serial port parameters of (N, 8,1), namely no check, 8-bit data, 1-bit stop bit, the default port rate is 9600 (modifiable), and the address is 01 (modifiable).

1 Protocol description

- a) In this Agreement, the letter "H" indicates that the data is 16 decimal digits.
- b) All registers are bi-bytes, with high bytes first and low bytes second. The whole negative number is represented by complement, namely, -1 is represented by FFFFH and-2 by FFFEH.
- c) The upper-position computer commands received by the instrument are all 8 bytes long, and the excess part is invalid, but the first 8 bytes of commands are still valid. For a 0.1 seconds pause, instructions not reaching 8 bytes are considered invalid.
- d) CRC check see CRC worksheet, sending high bytes before and low bytes after. When the check code is 2A2AH, the instrument directly passes does not check.

2. Register General Description

Instrument registers are divided into three categories: floating register, parameter register and information register

a) Floating register data is the real-time measurement data of the instrument, such as conductivity value, temperature value, etc. A total of 20 register addresses, 0000H \sim 0013H (decimal 0 \sim 19), and the data can be read by the function code 03 or 04.

When reading data using function code 04, the measurement data returned by the instrument is an integer. One data contains two parts, the first part is divided into data numerical integer, occupy a register, the second part is the data decimal number and units, share a register, each occupy one byte, the unit code to see the unit code table.

When accessed with the function code 03, the measurement data returned by the instrument is floating point, and one data occupies two registers (a total of 4 bytes) to represent the floating point data in the default value.

- b) The parameter register contains the calibration situation of the instrument and some parameters that can be set by the user, including 40 register addresses, 004 H $^{\sim}$ 004 H $^{\sim}$ 003 B H (decimal 20 $^{\sim}$ 59), read register data using function code 03, write registers with writable attributes using function code 06, such as modified communication wave rate, instrument ID, etc.
- c) The information register contains the running status of the instrument and the basic information of the instrument, such as the instrument serial number, model, etc., a total of 20 register addresses, 003CH~ 004FH (decimal 60~79), read the register data using function code 03, and write the register with writable attributes using function code 06, used to control the instrument operation, such as the instrument calibration operation.

The three types of register addresses are continuously arranged continuously, but when reading the register data with the function code 03, the number of instruction read register cannot exceed the current register type.

3 Read the floating register data command format function code 03 or 04

Upper-co	From the machine address	FC	Register address range	Number of read registers: N	CRC
mputer instructio	01H~F7H	03 Or 04	0000H~0013H	1~20	CRC tall CRC low
n format	1 Bytes	1 Bytes	2 Bytes	2 Bytes	2 Bytes

From the machine Lower address	FC	Byte number	Data for the N registers	CRC	
position machine responds	01H~F7H	03 Or 04	N*2	data	CRC tall CRC low
normally	1 Bytes	1 Bytes	1 Bytes	N * 2 bytes	2 Bytes

Read floating register floating point data instruction example: (send and answer data in headecimal format)

Example: Read 10 floating registers from the 0000H address

Computer bit send: 01 03 00 00 00 0A C5 CD

Lower position response: 01 03 14 00<u>00 4120 333342 C8 00 00 00 00 00 00 00 E3</u>

E8 41 C7 43 0C

Send interpretation:

On the					
machine to	01	03	0000	000A	C5CD
send					
decimal	1	3	0	10	
system	1	3	O	10	
	Device with a	Read the floating	Start with the	Read the 10	CRC
unscramble	slave address	register			verificati
	of 1	floating-point data	address of 0000H	registers	on

Response interpretation: (see floating register address table)

Lower	01	03	14
machine			
response			
decimal	1	3	20
system			
	Device with a slave	Answer the floating register	Ten registers
unscramble	address of 1	Floating-point data reading	The length is 20 bytes
	address of 1	instruction	

Lower machine	0000	4120	3333	42C8
response				
Register address	0000Н	0001H	0002H	0003H
Register name	Ion concentration values		Electrode s	ignal value
floating number	10.00		100.1	
unscramble	Ion concentration value: 10.00ppm		Electrode signal value: 100.1mV	

Lower machine	0000	0000	0000	0000
response				
Register address	0004H	0005H	0006Н	0007H
Register name				
floating number				
unscramble	insignificance		insignificance	

Lower machine	E3E8	41C7	430C
response			
Register address	0008H	0009Н	
Register name	temperature scale		
floating number	24.986282		
unscramble	Temperature value: 25.0 $^{\circ}\mathrm{C}$		CRC verification

Read floating register integer data instruction Example: (send and answer data in hexadecimal format)

Example: Read 10 floating register integer data starting from the 0000H address

On-board bit send: 01 04 00 00 00 0A 70 0D

Lower position response: 01 04 14 03EB 02 11 03 EC 01 00 00 00 00 00 00 00

00 00 00 FA 01 0B C7 51

Send interpretation:

On the machine to send	01	04	0000	000A	700D
decimal system	1	4	0	10	
unscramble	Device with a slave address of	Read the floating register integer data	Start with the address of 0000H	Read the 10 registers	CRC verification

Response interpretation: (see floating register address table)

Lower machine	01	04	14
response			
decimal system			20
		Answer the floating	Ten registers
unscramble	Device with a slave address	register	The length is 20 bytes
unscramble	of 1	Whole data reading	
		instruction	

Lower machine	03EB	0211		03EC	0100	
response						
Register address	0000Н	0001H		0002H	0003H	
	lon concentration values	lon concentration values		Electrode signal	Electrode signal value	
Register name	numeric value	decimal	unit	value numeric value	decimal	unit
		02	11	nument value	01	00
decimal system	1000			1001		
unscramble	Ion concentration value: 10.00p pm			Electrode signal value: 100.1mV		

Lower machine	0000	0000	0000	0000	
response					
Register address	0004H	0005H	0006Н	0007H	
Register name					
decimal system					
unscramble	insigni	ficance	insignificance		

Lower machine	00FA	010B		C751
response				
Register address	0008H	0009Н		
	temperature scale numeric value	temperature scale		
Register name		decimal	unit	
		01	ОВ	
decimal system	250			
unscramble	Temperature value: 25.0℃			CRC verification

4 Read the parameter register data instruction format function code 03

Uppe r-co mput	From the machine address	FC	Register address range	Number of read registers: N	CRC
er instr uctio	01H~F7H	03	00014H~003BH	1~40	CRC tall CRC low
n form at	1 Bytes	1 Bytes	2 Bytes	2 Bytes	2 Bytes

Lowe	From the				
r	machine	FC	Byte number	Data for the N registers	CRC
positi	address				
on mach ine	01H~F7H	03	N*2	data	CRC tall CRC low
respo nds norm ally	1 Bytes	1 Bytes	1 Bytes	N * 2 bytes	2 Bytes

Read parameter register data instruction Example: (send and answer data in hex format)

Example: Read the 7 parameter registers starting from the 001EH address

Host bit transmission: 01 03 00 1E 00 06 A5CE

Next position response: 01 03 0C 00 01 00 03 00 01 00 00 00 00 00 01 52<u>7C</u>

Send interpretation:

On the					
machine to	01	03	001E	0006	A5CE
send					
decimal	1	3	30	6	
system	1	5	30	0	
unscramble	Device with a slave address of 1	Read register data	Start with the address, 001EH	Read the 6 registers	CRC verificati on

Response interpretation: (See parameter register address table)

Lower	01	03	0C
machine			
response			
decimal	1	3	12
system			
	Device with a slave	Answer the parameter register	The six registers are 12 bytes in
unscramble	address of 1	data read instruction	length

Lower	0001	0003	0001	0000
machine				
response				
Register	001EH	001FH	0020H	0021H
address				
				Temperature offset set
Register	This machine	traffic rate	Tomporature fill type	point
name	address	tranic rate	Temperature fill type	Or for the manual
				temperature settings
decimal	1	3	1	0
system				
unscramble	The native address is 1	3 Corresponding to 9,600, Note 1	1 Corresponding to the automatic temperature supplement note 1	0 Represents the bias 0.0°C Note 2

Lower machine response	0000	0001	527C
Register address	0022H	0023H	
Register address	002211		
		ionic valency	
Register name	unused	0: No ionic price is set	
Register Harrie		1: Monovalent ion	
		2: Divalent ions	
decimal system	0	0	
unscramble		1 Corresponding to one price	CRC verification

Note 1 The corresponding significance of the data value in some interpretation only lists the corresponding meaning of the current value, and please see the parameter register for the other corresponding meaning for details.

Note 2 The Temperature bias setting value or the manual temperature setting value (0021H) register is determined by the temperature supplement type register (0020H). If the temperature supplement setting type is the manual temperature setting value, this register is the manual temperature setting value. This register is a temperature offset setting if the temperature supplement type is automatic. This register is a 10 x value, such as a read to 00FAH, and is converted to a decimal to 250, representing 25.0 $^{\circ}$ C. To write 10.0 $^{\circ}$ C to the register, the hexadecimal value of 0064H corresponding to 100 is written.

5 Read the information register data instruction format function code 03

Uppe r-co mput	From the machine address	FC	Register address range	Number of read registers:	CRC
er instr uctio	01H~F7H	03	0003CH~004FH	1~20	CRC tall CRC low
n form at	1 Bytes	1 Bytes	2 Bytes	2 Bytes	2 Bytes

Lowe	From the				
r	machine	FC	Byte number	Data for the N registers	CRC
positi	address				
on mach ine	01H~F7H	03	N*2	data	CRC tall CRC low
respo nds norm ally	1 Bytes	1 Bytes	1 Bytes	N * 2 bytes	2 Bytes

Read Information Register data instructions Example: (Send and answer data in hexformat)

Example: Read the 10 information registers starting from the 0040H address

Computer bit send: 01 03 00 40 00 0A C4 19

Response: 010314001000000000000000101210010001011234 AB CD 5935

Send interpretation:

On the					
machine to	01	03	0040	000A	C419
send					
decimal				10	
system				10	
		5 1	6	D 111 40	CRC
unscramble	Device with a slave	Read register	Start with the	Read the 10	verificati
	address of 1	data	address of 0040H	registers	on
					on

Response Interpretation: (See Information Register Address Table)

Lower	01	03	14
machine			
response			
decimal			20
system			
	Device with a slave	Answer the information register	Ton voristovs ave 20 bytes in length
unscramble	address of 1	data read instructions	Ten registers are 20 bytes in length

Lower machine	0010	0000	0000	0000
response				
Register address	0040Н	0041H	0042H	0043H
Register name	work pattern	Pattern parameter	Work events	State instructions
unscramble	Currently in	There's no point	There's no point	There's no point
ansolution	measurement mode	here	here	here

Lower machine	0010	1210	0100	0101
response				
Register address	0044H	0045H	0046H	0047H
Register name	device type	device type unit type		Hardware version
unscramble	Device model: ION 1210		1.00	1.01

Lower machine	1234	ABCD	5935
response			
Register address	0048H	0049H	
Dooiston nome	Cavial assessantia biala	Serial number is	
Register name	Serial number is high	low	
unscramble	Device Serial numb	per 1234ABCD	CRC verification

6 Modify a single parameter or information register data instruction format function code 06

Upper-co	From the machine address	FC	Register address to be modified	modifie d value	CRC
mputer instructio	01H~F7H	06	The address of the register in the register that has writable properties	data	CRC tall CRC low
n format	1 Bytes	1 Bytes	2 Bytes	2 Bytes	2 Bytes

Lower position machine responds normally	From the machine address	FC	Modified register address	Modified value	CRC
	01H~F7H	06	Register address	data	CRC tall CRC low
	1 Bytes	1 Bytes	2 Bytes	2 Bytes	2 Bytes

Modify a single parameter or information register instruction Example: (data is hexadecimal)

Example 1: Change the ion valence (register 0023H) to bivalent

Computer bit sent: 01 06 00 23 00 02 F9C1

Response: 01 06 00 23 00 02 F9C 1

Send interpretation:

On	the	01	06	0023	0002	F9C 1
mach	nine to					
se	end					
dec	cimal					
sys	stem					
		Device with a	Modify the	Ion valence register	Modify the value	CRC
unscr	ramble	slave address of 1	register data	address	to a 2-price value	verificati
			instructions	auuless	to a 2-price value	on

Answer interpretation:

Lower	01	06	0023	0002	F9C 1
machine					
response					
decimal					
system					
	Device with a	Answer the	lon valence	The value was	CRC
unscramble	slave address of 1 modified regis		register address	modified to a 2 price	verificati
		data instruction		modified to a 2 price	on

Example 2: Set the temperature offset value (register 0021H) to-5.0 $^{\circ}$ C

Send on the computer bit: 01 06 00 21 FF CE 19 A4 $\,$

Lower position response: 01 06 00 21 FF CE 19 A4

Send interpretation:

On the	01	06	0021	FFCE	19A4
machine to					
send					
decimal				-50	
system					
	Device with a	Modify the	Temperature	Modify the value	CRC
unscramble	slave address	register data	offset register	to	verification
	of 1	instructions	address	-5.0℃	verification

Answer interpretation:

Lower machine	01	06	0021	FFCE	19A4
response					
decimal				-50	
system					
	Device with a	Answer the	Temperature	The value was	CDC
unscramble	slave address	modified register	offset register	modified to-5.0℃	CRC verification
	of 1	data instruction	address		verification

7 Error instruction answer format

Lower machine error answer	From the machine address	FC	Error code	CRC
	01H~F7H	Receive command function code + 80H	Error code is shown in the protocol description	CRC tall CRC low
	1 Bytes	1 Bytes	1 Bytes	2 Bytes

Function code: When the instrument receives an error instruction, it will add 80H as the function code of the answer data frame. If the upper computer uses the 03 function code, and the function code is 83H, then the instruction of the upper computer is wrong, and the specific error needs to check the error code.

Error code:

01: Function code error. This protocol only supports access to function code 03,04,06. If the function code is of other values, the error code is returned.

02: The register address is wrong, which is returned when the register address accessible by the function code exceeds the corresponding allowable range.

03: The number of registers is wrong, the number of registers to be read exceeds the range of subsequent registers of the current type, and return this error code.

04: The modified value is wrong, the data of the register to be modified is beyond the value range of this register data, and this error code is returned.

05: CRC error, the check result is inconsistent, this error code is returned.

06: Write error, you have performed a write (modify) operation on the read-only register, namely, access the read-only register with the function code 06, and return this error code.

8 Floating register address (whole type)

Register address	Register name	scope	high byte	lower byte	Read / write	remarks
0000Н	lon concentration values		16 Plasti	c 0~20000	R	0.7555
0001H	lon concentration values Numbers and units	0ppm~20000ppm	decimal digits	Unit (check the form)	R	0x7FFF 0x8000 Over the lower limit
0002H	The electrode signal		16-750	00~7500	R	0x7FFF
0003Н	Electrode signal decimal and unit	-750.0mV~750.0mV	decimal digits	Unit (check the form)	R	0x8000 Over the lower limit
0004H						
0005H						
0006Н						
0007H						
0008Н	temperature scale		16-bit Plas	tic-100~1100	R	0.7555
0009Н	temperature scale Numbers and units	-10.0℃~110.0℃	decimal digits	Unit (check the form)	R	0x7FFF 0x8000 Over the lower limit

9 Floating register address (floating-point type)

Register address	Register name	scope	data type	Read / write	remarks
0000Н	lon		Floating-point data		
0001H	concentration values	0.000~20000p pm	unit ppm	R	
0002H	The electrode	.0-750mV~750mV.0	Floating-point data	R	
0003H	signal		unit mV		
0004H					
0005H					
0006Н					
0007H					
0008H					110.1 Over the
0009Н	temperature scale	-10.0℃~110.0℃	Floating-point data unit: $^{\circ}\mathbb{C}$	R	upper limit $-10.1^{\circ}\!$

10 Parameter register address

Register address	Register name	span	explain	Read / write / long arms	Windows default
0019H	Electrode calibration Note 4	0: Not calibrated 1: Calibrated	BIT2チ0.1ppm BIT3チ1ppm BIT4チ10ppm BIT5チ100ppm BIT5チ1000ppm	R/D	Not calibrated
001AH					
001BH					
001CH	Electrode efficiency	70.0% ~130.0%	16 Plastic Surgery 700~1300 Default is one decimal unit of%	R/D	100.0%
001DH	The number of points has been calibrated	0~5			0
001EH	This machine address	1~247	The 255 (FFH) is the general address	R/W	1
001FH	traffic rate	0チ1200 1チ2400 2チ4800 3チ9600 4チ19200		R/W	9600
0020Н	Temperature fill type	0: Manual temperature supplement 1: Automatic temperature	This register value determines the next register significance	R/W/D	Automatic warm fill

		supplement			
0021H	Temperature setting value (Manual warm stoppage time)	-10.0℃~110.0℃ -10.0℃~10.0℃	The 10 x value was read to 250 The actual value is 25.0℃ Note 5	R/W/D	25.0℃
	value (Automatic warm stoppage time)				0.0℃

Read and write slow attribute, R means readable, W means itable, D means to perform the recovery factory setting operation This register will be overwritten to the default value, no D means that the register is not affected by the recovery factory setting operation.

Note 4 Reference to the standard fluid code and calibration section Note 5 register values are plastic, so such registers are 10 or 100 times the actual value, like the temperature reference read to 00FAH, converted to decimal to 250, representing 25.0 $^{\circ}$ C. To write 10.0 $^{\circ}$ C to the register, the hexadecimal value of 0064H corresponding to 100 is written.

11. Information register address

Register address	Register name	span	Read / write	remarks
0040Н	work pattern	0010H: Measurement mode 0050H: Set the mode 0060H: Calibration mode	R/W	Note 6
0041H	Pattern parameters		R/W	
0042H	Work events		R	Refer to the specific working
0043H	Calibration status and operation		R/W	mode section introduction
0044H	Instrument type	0010HチION	R	
0045H	Instrument model	1210H	R	BCD a sign or object indicating number
0046H	software release		R	BCD a sign or object indicating number
0047H	Hardware version		R	BCD a sign or object indicating number
0048H	Instrument serial number 1		R	BCD a sign or object indicating number
0049Н	Instrument serial number 2		R	BCD a sign or object indicating number

Note 6 When accessing the next machine operating mode register, the return value will be at the bottom of hexadx is not 0, press 0. If the working mode register is read, the return value is 0011H, or 0010H, indicating that the instrument is currently in the measurement mode.

12 Ion standard liquid code and calibration situation

The ion can be calibrated at five points, and the standard liquid is represented by BIT 6~BIT2 in a binary of a 16-bit integer value. The correspondence is shown in the table below

	Unused	1000ppm	100ppm	10ppm	1ppm	0.1ppm	Unused
The							
16-digit	BIT15~BIT 7	BIT 6	BIT 5	BIT 4	BIT3	BIT 2	BIT1 B IT0
type							

Like 0.1ppm standard liquid, the code is 0002H

1ppm Standard liquid, code 0004H.

10ppm Standard liquid, with the code of 0008H.

100ppm Standard liquid, with the code 0010H.

1000ppm Standard fluid, code 0020H.

If the calibration case register value is 000CH, then both the 1ppm point and the 10ppm points have been calibrated.

13 Unit control table

data	00H	01H	02H	03H	04H	05H	06H
unit	mV	nA	uA	mA	Ω	ΚΩ	МΩ
data	07H	08H	09H	0AH	ОВН	0CH	0DH
unit	uS	mS	S	рН	$^{\circ}$	°F	ug/L
data	0EH	0FH	10H	11H	12H	13H	14H
unit	mg/L	g/L	ppb	ppm	ppt	%	mbar
data	15H	16H					
unit	bar	mmHg					

7. Set up the mode

The user can use the upper computer computer to send instructions through the RS485 interface to enable the instrument to enter the setting mode, in which the instrument can be used to restore the factory setting. The specific operation procedure is as follows:

a) Enter the setup mode. Use the 06H function code to write a value (0050H) in the working mode register (address 0040H) to bring the instrument into the setup mode.

Upper computer sent: 01 06 00 40 00 50 88 22

Next machine reply: 01 06 00 40 00 50 88 22

b) Write recovery instructions. After the instrument enters the setting mode, use the 06H function code to write the value (7FFFH) in the mode parameter register (address 0041H), the instrument will clear all calibration information and restore the temperature mode and temperature bias to the default value (automatic temperature supplement, offset 0.0°C), and the parameter register needs to restore to the default value, and then restart.

Host computer sent: 01 06 00 41 7F FF B9 AE

Next bit computer reply: 01 06 00 41 7F FF B9 AE

Viii. Calibration process

The universal ion digital electrode cannot calculate the ion concentration value without being calibrated, and it can only be calibrated with two or more different standard concentration fluids. In order to ensure the accuracy and correctness of the measurement, users also need to use a standard solution to calibrate the electrodes regularly. The calibration mode of this instrument is to send the command through the RS485 interface.

1 Calibration process

- a) Place the electrodes into the standard solution.
- b) Write the standard fluid code in the calibration state register (0043H).
- c) Wait for the calibration to complete. The calibration can be viewed by reading the value of the calibration status register (0043H). The reading value is corresponding to the following conditions as follows:
 - 0: Successful calibration (returned to measurement mode).
 - 1: Calibrating (still in calibration mode, please read the status later).
 - 2: No correct standard fluid value was received (the measurement mode was returned).
 - 3:1 The signal cannot stabilize or exceed the measurement range within 180 seconds (the measurement mode is returned).
 - 4: Sensor performance (slope or offset value) is outside the allowable range (measurement mode is returned).
- d) To calibrate the other points, repeat this process.

2. Calibration instructions

- a) The electrode can be calibrated at up to five points, and the calibration point can be calibrated again, indicating error 2, and the correct standard fluid is not received.
- b) After each successful calibration point, if the ion price is set, the electrode will calculate the efficiency to determine the performance. If the allowable range is exceeded, the error 4 will be indicated, and the calibration will fail. Sensor performance can be viewed by reading registers such as calibration conditions, electrode slope, etc.
- c) Writing the 7FFFH in the calibration state register (0043H) clears all of the calibration information.

3. Examples of the calibration instructions

a) Calibrate the midpoint and write the 1ppm standard fluid code (0004H) to the calibration status register (0043H)

Send on board: 01 06 00 43 00 04 79 DD

Position response: 01 06 00 43 00 04 79 DD

) Query the calibration state, and the read state indicates the register

Computer bit sent: 01 03 00 43 00 01 75 DE

Lower position response: 01 03 02 00 00 B8 44

See the underscore in the answer for the interpretation in the calibration process.

c) After the calibration, the device will return to the measurement status, regardless whether the calibration is successful, pay attention to modify the code of different standard fluids and recalculate the CRC. See the common instruction section for specific instructions.

9. Commonly used instructions

1 Read the register (take the device address 01H as an example)

	device		Read the register	Number of read	CRC
Directive meaning	address	FC	first address	registers	verification
Read all of the floating					
registers	01	04	00 00	00 0A	70 0D
The whole data					
Read all of the floating					
registers	01	02	00.00	00.04	CE CD
Floating point type	01	03	00 00	00 0A	C5 CD
data					
Read all of the	01	02	00.10	00.00	04.09
parameter registers	01	03	00 19	00 OC	94 08
Read all of the	01	02	00.40	00.04	C4.10
information registers	01	03	00 40	00 0A	C4 19

2 Modify the register

Directive meaning	device address	FC	The address of the register that you want to modify	modified value	CRC verification
Modify the device address to 02	01	06	00 1E	00 02	68 OD
Modifies the Porter rate to 2,400	01	06	00 1F	00 01	79 CC
Modify the temperature supplement type to manual	01	06	00 20	00 00	88 00
Modify the temperature supplement type to automatic	01	06	00 20	00 01	49 CO
Modify the temperature bias value of-5.0 $^{\circ}$ C	01	06	00 21	FF CE	19 A4
Ion price is changed to 1 price	01	06	00 23	00 01	B9 C0
Ion price is changed to 2 price	01	06	00 23	00 02	F9 C1

3. Restore the factory settings (execute the following two instructions)

Directive meaning	device address	FC	The address of the register that you want to modify	modified value	CRC verificatio n
Put the device into the setup mode	01	06	00 40	00 50	88 22
Send a restore factory command	01	06	00 41	7FFF	B9 AE

4 Electrode calibration

Directive meaning	device address	FC	The address of the register that you want to modify	modified value	CRC verification
Clear all of the calibration points	01	06	00 43	7F FF	18 6E
calibration 0.1ppm	01	06	00 43	00 02	F9 DF
calibration 1ppm	01	06	00 43	00 04	79 DD
calibration 10ppm	01	06	00 43	00 08	79 D8
calibration 100ppm	01	06	00 43	00 10	79 D2
calibration 1000ppm	01	06	00 43	00 20	79 C6
Query calibration status	01	03	00 43	00 01	75 DE

